Pixel
binning is a clocking scheme used to combine the charge collected by
several adjacent CCD pixels, and is designed to reduce noise and improve
the signal-to-noise ratio and frame rate of digital cameras. The
binning process is performed by on-chip CCD clock timing circuitry that
assumes control of the serial and parallel shift registers prior to
amplification of the CCD analog signal.
To illustrate this process, Figure 1(b) shows each integrated pixel in the parallel register stepping by an increment of one gate to yield the arrangement shown in Figure 1(c). Here, the electrons from two pixels remain in the parallel shift register, while those from the other two have been transferred to the serial shift register. Another step (Figure 1(c)), shifts the remaining electrons in the parallel shift register to fill the adjacent gate elements in the serial register (Figure 1(d)). The final steps involve shifting of charge from the serial register, two pixels at a time, to the summing pixel (Figure 1(d) and (e)). Figure 1(f) illustrates the combined charge of four pixels in the summing well awaiting transfer to the output amplifier, where the signal will be converted to a voltage and then transferred to other integrated circuits for further amplification and digitization. The process continues until the entire array has been read out. In this example, the area of four adjacent pixels has been combined into one larger pixel, sometimes referred to as a super pixel. The signal-to-noise ratio has been increased by a factor of four, but the image resolution is cut by 50 percent.
Binning array sizes are controlled by the CCD clock, bias voltages, and video processing signal timing, and are usually adjustable from 2 x 2 pixels to a maximum that can include almost the entire CCD array. However, in the binning mode, both the serial shift register and output node will accumulate a significantly larger charge than in normal operation and must contain sufficient electron charge capacity to prevent saturation. Typical CCD serial registers have twice the charge capacity as the parallel registers, and the output nodes usually contain 50- to 100-percent more charge capacity than do the shift registers. As an example, the Kodak KAF full-frame CCD image sensors have a parallel array of 9-micron pixels, each with a capacity of 120,000 electrons. The KAF serial registers have an electron capacity twice that of the parallel registers (240,000 electrons), while the output node has a capacity of 330,000 electrons.
The primary benefit of pixel binning is to improve the signal-to-noise ratio in low light conditions at the expense of spatial resolution. Summation of many charge packets reduces the read noise level and produces an improvement in signal equal to the binning factor (4x in the example above). Dark current noise is not reduced by binning and may only be overcome by cooling the CCD to low temperatures. Binning is useful in a variety of applications, especially where fast throughput times (frame rates) are desired at the expense of resolution.
Contributing Authors
Mortimer Abramowitz - Olympus America, Inc., Two Corporate Center Drive., Melville, New York, 11747.
Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.